3.5.8 \(\int (e \sec (c+d x))^{3/2} (a+i a \tan (c+d x))^{5/2} \, dx\) [408]

Optimal. Leaf size=612 \[ \frac {15 i a^3 (e \sec (c+d x))^{3/2}}{8 d \sqrt {a+i a \tan (c+d x)}}-\frac {15 i a^{7/2} e^{3/2} \text {ArcTan}\left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right ) \sec (c+d x)}{8 \sqrt {2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {15 i a^{7/2} e^{3/2} \text {ArcTan}\left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right ) \sec (c+d x)}{8 \sqrt {2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {15 i a^{7/2} e^{3/2} \log \left (a-\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a-i a \tan (c+d x))\right ) \sec (c+d x)}{16 \sqrt {2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {15 i a^{7/2} e^{3/2} \log \left (a+\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a-i a \tan (c+d x))\right ) \sec (c+d x)}{16 \sqrt {2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {3 i a^2 (e \sec (c+d x))^{3/2} \sqrt {a+i a \tan (c+d x)}}{4 d}+\frac {i a (e \sec (c+d x))^{3/2} (a+i a \tan (c+d x))^{3/2}}{3 d} \]

[Out]

15/8*I*a^3*(e*sec(d*x+c))^(3/2)/d/(a+I*a*tan(d*x+c))^(1/2)-15/16*I*a^(7/2)*e^(3/2)*arctan(1-2^(1/2)*e^(1/2)*(a
-I*a*tan(d*x+c))^(1/2)/a^(1/2)/(e*sec(d*x+c))^(1/2))*sec(d*x+c)/d*2^(1/2)/(a-I*a*tan(d*x+c))^(1/2)/(a+I*a*tan(
d*x+c))^(1/2)+15/16*I*a^(7/2)*e^(3/2)*arctan(1+2^(1/2)*e^(1/2)*(a-I*a*tan(d*x+c))^(1/2)/a^(1/2)/(e*sec(d*x+c))
^(1/2))*sec(d*x+c)/d*2^(1/2)/(a-I*a*tan(d*x+c))^(1/2)/(a+I*a*tan(d*x+c))^(1/2)+15/32*I*a^(7/2)*e^(3/2)*ln(a-2^
(1/2)*a^(1/2)*e^(1/2)*(a-I*a*tan(d*x+c))^(1/2)/(e*sec(d*x+c))^(1/2)+cos(d*x+c)*(a-I*a*tan(d*x+c)))*sec(d*x+c)/
d*2^(1/2)/(a-I*a*tan(d*x+c))^(1/2)/(a+I*a*tan(d*x+c))^(1/2)-15/32*I*a^(7/2)*e^(3/2)*ln(a+2^(1/2)*a^(1/2)*e^(1/
2)*(a-I*a*tan(d*x+c))^(1/2)/(e*sec(d*x+c))^(1/2)+cos(d*x+c)*(a-I*a*tan(d*x+c)))*sec(d*x+c)/d*2^(1/2)/(a-I*a*ta
n(d*x+c))^(1/2)/(a+I*a*tan(d*x+c))^(1/2)+3/4*I*a^2*(e*sec(d*x+c))^(3/2)*(a+I*a*tan(d*x+c))^(1/2)/d+1/3*I*a*(e*
sec(d*x+c))^(3/2)*(a+I*a*tan(d*x+c))^(3/2)/d

________________________________________________________________________________________

Rubi [A]
time = 0.48, antiderivative size = 612, normalized size of antiderivative = 1.00, number of steps used = 14, number of rules used = 9, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.300, Rules used = {3579, 3580, 3576, 303, 1176, 631, 210, 1179, 642} \begin {gather*} -\frac {15 i a^{7/2} e^{3/2} \sec (c+d x) \text {ArcTan}\left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{8 \sqrt {2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {15 i a^{7/2} e^{3/2} \sec (c+d x) \text {ArcTan}\left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{8 \sqrt {2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {15 i a^{7/2} e^{3/2} \sec (c+d x) \log \left (-\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a-i a \tan (c+d x))+a\right )}{16 \sqrt {2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {15 i a^{7/2} e^{3/2} \sec (c+d x) \log \left (\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a-i a \tan (c+d x))+a\right )}{16 \sqrt {2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {15 i a^3 (e \sec (c+d x))^{3/2}}{8 d \sqrt {a+i a \tan (c+d x)}}+\frac {3 i a^2 \sqrt {a+i a \tan (c+d x)} (e \sec (c+d x))^{3/2}}{4 d}+\frac {i a (a+i a \tan (c+d x))^{3/2} (e \sec (c+d x))^{3/2}}{3 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(e*Sec[c + d*x])^(3/2)*(a + I*a*Tan[c + d*x])^(5/2),x]

[Out]

(((15*I)/8)*a^3*(e*Sec[c + d*x])^(3/2))/(d*Sqrt[a + I*a*Tan[c + d*x]]) - (((15*I)/8)*a^(7/2)*e^(3/2)*ArcTan[1
- (Sqrt[2]*Sqrt[e]*Sqrt[a - I*a*Tan[c + d*x]])/(Sqrt[a]*Sqrt[e*Sec[c + d*x]])]*Sec[c + d*x])/(Sqrt[2]*d*Sqrt[a
 - I*a*Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]]) + (((15*I)/8)*a^(7/2)*e^(3/2)*ArcTan[1 + (Sqrt[2]*Sqrt[e]*Sqr
t[a - I*a*Tan[c + d*x]])/(Sqrt[a]*Sqrt[e*Sec[c + d*x]])]*Sec[c + d*x])/(Sqrt[2]*d*Sqrt[a - I*a*Tan[c + d*x]]*S
qrt[a + I*a*Tan[c + d*x]]) + (((15*I)/16)*a^(7/2)*e^(3/2)*Log[a - (Sqrt[2]*Sqrt[a]*Sqrt[e]*Sqrt[a - I*a*Tan[c
+ d*x]])/Sqrt[e*Sec[c + d*x]] + Cos[c + d*x]*(a - I*a*Tan[c + d*x])]*Sec[c + d*x])/(Sqrt[2]*d*Sqrt[a - I*a*Tan
[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]]) - (((15*I)/16)*a^(7/2)*e^(3/2)*Log[a + (Sqrt[2]*Sqrt[a]*Sqrt[e]*Sqrt[a
- I*a*Tan[c + d*x]])/Sqrt[e*Sec[c + d*x]] + Cos[c + d*x]*(a - I*a*Tan[c + d*x])]*Sec[c + d*x])/(Sqrt[2]*d*Sqrt
[a - I*a*Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]]) + (((3*I)/4)*a^2*(e*Sec[c + d*x])^(3/2)*Sqrt[a + I*a*Tan[c
+ d*x]])/d + ((I/3)*a*(e*Sec[c + d*x])^(3/2)*(a + I*a*Tan[c + d*x])^(3/2))/d

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 303

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]},
Dist[1/(2*s), Int[(r + s*x^2)/(a + b*x^4), x], x] - Dist[1/(2*s), Int[(r - s*x^2)/(a + b*x^4), x], x]] /; Free
Q[{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ,
 b]]))

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 3576

Int[Sqrt[(d_.)*sec[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-4*b*(d^
2/f), Subst[Int[x^2/(a^2 + d^2*x^4), x], x, Sqrt[a + b*Tan[e + f*x]]/Sqrt[d*Sec[e + f*x]]], x] /; FreeQ[{a, b,
 d, e, f}, x] && EqQ[a^2 + b^2, 0]

Rule 3579

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(d*
Sec[e + f*x])^m*((a + b*Tan[e + f*x])^(n - 1)/(f*(m + n - 1))), x] + Dist[a*((m + 2*n - 2)/(m + n - 1)), Int[(
d*Sec[e + f*x])^m*(a + b*Tan[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, d, e, f, m}, x] && EqQ[a^2 + b^2, 0] &&
 GtQ[n, 0] && NeQ[m + n - 1, 0] && IntegersQ[2*m, 2*n]

Rule 3580

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(3/2)/Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[d*(Sec
[e + f*x]/(Sqrt[a - b*Tan[e + f*x]]*Sqrt[a + b*Tan[e + f*x]])), Int[Sqrt[d*Sec[e + f*x]]*Sqrt[a - b*Tan[e + f*
x]], x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 + b^2, 0]

Rubi steps

\begin {align*} \int (e \sec (c+d x))^{3/2} (a+i a \tan (c+d x))^{5/2} \, dx &=\frac {i a (e \sec (c+d x))^{3/2} (a+i a \tan (c+d x))^{3/2}}{3 d}+\frac {1}{2} (3 a) \int (e \sec (c+d x))^{3/2} (a+i a \tan (c+d x))^{3/2} \, dx\\ &=\frac {3 i a^2 (e \sec (c+d x))^{3/2} \sqrt {a+i a \tan (c+d x)}}{4 d}+\frac {i a (e \sec (c+d x))^{3/2} (a+i a \tan (c+d x))^{3/2}}{3 d}+\frac {1}{8} \left (15 a^2\right ) \int (e \sec (c+d x))^{3/2} \sqrt {a+i a \tan (c+d x)} \, dx\\ &=\frac {15 i a^3 (e \sec (c+d x))^{3/2}}{8 d \sqrt {a+i a \tan (c+d x)}}+\frac {3 i a^2 (e \sec (c+d x))^{3/2} \sqrt {a+i a \tan (c+d x)}}{4 d}+\frac {i a (e \sec (c+d x))^{3/2} (a+i a \tan (c+d x))^{3/2}}{3 d}+\frac {1}{16} \left (15 a^3\right ) \int \frac {(e \sec (c+d x))^{3/2}}{\sqrt {a+i a \tan (c+d x)}} \, dx\\ &=\frac {15 i a^3 (e \sec (c+d x))^{3/2}}{8 d \sqrt {a+i a \tan (c+d x)}}+\frac {3 i a^2 (e \sec (c+d x))^{3/2} \sqrt {a+i a \tan (c+d x)}}{4 d}+\frac {i a (e \sec (c+d x))^{3/2} (a+i a \tan (c+d x))^{3/2}}{3 d}+\frac {\left (15 a^3 e \sec (c+d x)\right ) \int \sqrt {e \sec (c+d x)} \sqrt {a-i a \tan (c+d x)} \, dx}{16 \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}\\ &=\frac {15 i a^3 (e \sec (c+d x))^{3/2}}{8 d \sqrt {a+i a \tan (c+d x)}}+\frac {3 i a^2 (e \sec (c+d x))^{3/2} \sqrt {a+i a \tan (c+d x)}}{4 d}+\frac {i a (e \sec (c+d x))^{3/2} (a+i a \tan (c+d x))^{3/2}}{3 d}+\frac {\left (15 i a^4 e^3 \sec (c+d x)\right ) \text {Subst}\left (\int \frac {x^2}{a^2+e^2 x^4} \, dx,x,\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{4 d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}\\ &=\frac {15 i a^3 (e \sec (c+d x))^{3/2}}{8 d \sqrt {a+i a \tan (c+d x)}}+\frac {3 i a^2 (e \sec (c+d x))^{3/2} \sqrt {a+i a \tan (c+d x)}}{4 d}+\frac {i a (e \sec (c+d x))^{3/2} (a+i a \tan (c+d x))^{3/2}}{3 d}-\frac {\left (15 i a^4 e^2 \sec (c+d x)\right ) \text {Subst}\left (\int \frac {a-e x^2}{a^2+e^2 x^4} \, dx,x,\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{8 d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {\left (15 i a^4 e^2 \sec (c+d x)\right ) \text {Subst}\left (\int \frac {a+e x^2}{a^2+e^2 x^4} \, dx,x,\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{8 d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}\\ &=\frac {15 i a^3 (e \sec (c+d x))^{3/2}}{8 d \sqrt {a+i a \tan (c+d x)}}+\frac {3 i a^2 (e \sec (c+d x))^{3/2} \sqrt {a+i a \tan (c+d x)}}{4 d}+\frac {i a (e \sec (c+d x))^{3/2} (a+i a \tan (c+d x))^{3/2}}{3 d}+\frac {\left (15 i a^4 e \sec (c+d x)\right ) \text {Subst}\left (\int \frac {1}{\frac {a}{e}-\frac {\sqrt {2} \sqrt {a} x}{\sqrt {e}}+x^2} \, dx,x,\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{16 d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {\left (15 i a^4 e \sec (c+d x)\right ) \text {Subst}\left (\int \frac {1}{\frac {a}{e}+\frac {\sqrt {2} \sqrt {a} x}{\sqrt {e}}+x^2} \, dx,x,\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{16 d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {\left (15 i a^{7/2} e^{3/2} \sec (c+d x)\right ) \text {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt {a}}{\sqrt {e}}+2 x}{-\frac {a}{e}-\frac {\sqrt {2} \sqrt {a} x}{\sqrt {e}}-x^2} \, dx,x,\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{16 \sqrt {2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {\left (15 i a^{7/2} e^{3/2} \sec (c+d x)\right ) \text {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt {a}}{\sqrt {e}}-2 x}{-\frac {a}{e}+\frac {\sqrt {2} \sqrt {a} x}{\sqrt {e}}-x^2} \, dx,x,\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{16 \sqrt {2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}\\ &=\frac {15 i a^3 (e \sec (c+d x))^{3/2}}{8 d \sqrt {a+i a \tan (c+d x)}}+\frac {15 i a^{7/2} e^{3/2} \log \left (a-\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a-i a \tan (c+d x))\right ) \sec (c+d x)}{16 \sqrt {2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {15 i a^{7/2} e^{3/2} \log \left (a+\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a-i a \tan (c+d x))\right ) \sec (c+d x)}{16 \sqrt {2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {3 i a^2 (e \sec (c+d x))^{3/2} \sqrt {a+i a \tan (c+d x)}}{4 d}+\frac {i a (e \sec (c+d x))^{3/2} (a+i a \tan (c+d x))^{3/2}}{3 d}+\frac {\left (15 i a^{7/2} e^{3/2} \sec (c+d x)\right ) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{8 \sqrt {2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {\left (15 i a^{7/2} e^{3/2} \sec (c+d x)\right ) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{8 \sqrt {2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}\\ &=\frac {15 i a^3 (e \sec (c+d x))^{3/2}}{8 d \sqrt {a+i a \tan (c+d x)}}-\frac {15 i a^{7/2} e^{3/2} \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right ) \sec (c+d x)}{8 \sqrt {2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {15 i a^{7/2} e^{3/2} \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right ) \sec (c+d x)}{8 \sqrt {2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {15 i a^{7/2} e^{3/2} \log \left (a-\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a-i a \tan (c+d x))\right ) \sec (c+d x)}{16 \sqrt {2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {15 i a^{7/2} e^{3/2} \log \left (a+\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a-i a \tan (c+d x))\right ) \sec (c+d x)}{16 \sqrt {2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {3 i a^2 (e \sec (c+d x))^{3/2} \sqrt {a+i a \tan (c+d x)}}{4 d}+\frac {i a (e \sec (c+d x))^{3/2} (a+i a \tan (c+d x))^{3/2}}{3 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Both result and optimal contain complex but leaf count is larger than twice the leaf count of optimal. \(11411\) vs. \(2(612)=1224\).
time = 58.71, size = 11411, normalized size = 18.65 \begin {gather*} \text {Result too large to show} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[(e*Sec[c + d*x])^(3/2)*(a + I*a*Tan[c + d*x])^(5/2),x]

[Out]

Result too large to show

________________________________________________________________________________________

Maple [A]
time = 1.00, size = 424, normalized size = 0.69

method result size
default \(\frac {\left (-1+\cos \left (d x +c \right )\right )^{2} \left (45 i \arctanh \left (\frac {\sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \left (\cos \left (d x +c \right )+1+\sin \left (d x +c \right )\right )}{2}\right ) \left (\cos ^{3}\left (d x +c \right )\right )-45 i \arctanh \left (\frac {\sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \left (\cos \left (d x +c \right )+1-\sin \left (d x +c \right )\right )}{2}\right ) \left (\cos ^{3}\left (d x +c \right )\right )+90 i \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )-68 i \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \cos \left (d x +c \right ) \sin \left (d x +c \right )+45 \arctanh \left (\frac {\sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \left (\cos \left (d x +c \right )+1+\sin \left (d x +c \right )\right )}{2}\right ) \left (\cos ^{3}\left (d x +c \right )\right )+45 \arctanh \left (\frac {\sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \left (\cos \left (d x +c \right )+1-\sin \left (d x +c \right )\right )}{2}\right ) \left (\cos ^{3}\left (d x +c \right )\right )-90 \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \left (\cos ^{3}\left (d x +c \right )\right )-16 i \sin \left (d x +c \right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}-158 \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \left (\cos ^{2}\left (d x +c \right )\right )-52 \cos \left (d x +c \right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}+16 \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\right ) \sqrt {\frac {a \left (i \sin \left (d x +c \right )+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \left (\frac {e}{\cos \left (d x +c \right )}\right )^{\frac {3}{2}} a^{2}}{48 d \left (i \sin \left (d x +c \right )+\cos \left (d x +c \right )-1\right ) \cos \left (d x +c \right ) \sin \left (d x +c \right )^{3} \left (\frac {1}{1+\cos \left (d x +c \right )}\right )^{\frac {3}{2}}}\) \(424\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*sec(d*x+c))^(3/2)*(a+I*a*tan(d*x+c))^(5/2),x,method=_RETURNVERBOSE)

[Out]

1/48/d*(-1+cos(d*x+c))^2*(45*I*cos(d*x+c)^3*arctanh(1/2*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)+1+sin(d*x+c)))-45
*I*cos(d*x+c)^3*arctanh(1/2*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)+1-sin(d*x+c)))+90*I*cos(d*x+c)^2*sin(d*x+c)*(
1/(1+cos(d*x+c)))^(1/2)-68*I*cos(d*x+c)*sin(d*x+c)*(1/(1+cos(d*x+c)))^(1/2)+45*arctanh(1/2*(1/(1+cos(d*x+c)))^
(1/2)*(cos(d*x+c)+1+sin(d*x+c)))*cos(d*x+c)^3+45*arctanh(1/2*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)+1-sin(d*x+c)
))*cos(d*x+c)^3-90*(1/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)^3-16*I*sin(d*x+c)*(1/(1+cos(d*x+c)))^(1/2)-158*(1/(1+co
s(d*x+c)))^(1/2)*cos(d*x+c)^2-52*cos(d*x+c)*(1/(1+cos(d*x+c)))^(1/2)+16*(1/(1+cos(d*x+c)))^(1/2))*(a*(I*sin(d*
x+c)+cos(d*x+c))/cos(d*x+c))^(1/2)*(e/cos(d*x+c))^(3/2)/(I*sin(d*x+c)+cos(d*x+c)-1)/cos(d*x+c)/sin(d*x+c)^3/(1
/(1+cos(d*x+c)))^(3/2)*a^2

________________________________________________________________________________________

Maxima [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 2914 vs. \(2 (434) = 868\).
time = 0.81, size = 2914, normalized size = 4.76 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sec(d*x+c))^(3/2)*(a+I*a*tan(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

192*(1808*a^2*cos(9/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 2016*a^2*cos(5/4*arctan2(sin(2*d*x + 2*c)
, cos(2*d*x + 2*c))) + 720*a^2*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 1808*I*a^2*sin(9/4*arcta
n2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 2016*I*a^2*sin(5/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 72
0*I*a^2*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - 90*(sqrt(2)*a^2*cos(6*d*x + 6*c) + 3*sqrt(2)*a^
2*cos(4*d*x + 4*c) + 3*sqrt(2)*a^2*cos(2*d*x + 2*c) + I*sqrt(2)*a^2*sin(6*d*x + 6*c) + 3*I*sqrt(2)*a^2*sin(4*d
*x + 4*c) + 3*I*sqrt(2)*a^2*sin(2*d*x + 2*c) + sqrt(2)*a^2)*arctan2(sqrt(2)*cos(1/4*arctan2(sin(2*d*x + 2*c),
cos(2*d*x + 2*c))) + 1, sqrt(2)*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 1) - 90*(sqrt(2)*a^2*co
s(6*d*x + 6*c) + 3*sqrt(2)*a^2*cos(4*d*x + 4*c) + 3*sqrt(2)*a^2*cos(2*d*x + 2*c) + I*sqrt(2)*a^2*sin(6*d*x + 6
*c) + 3*I*sqrt(2)*a^2*sin(4*d*x + 4*c) + 3*I*sqrt(2)*a^2*sin(2*d*x + 2*c) + sqrt(2)*a^2)*arctan2(sqrt(2)*cos(1
/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 1, -sqrt(2)*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*
c))) + 1) - 90*(sqrt(2)*a^2*cos(6*d*x + 6*c) + 3*sqrt(2)*a^2*cos(4*d*x + 4*c) + 3*sqrt(2)*a^2*cos(2*d*x + 2*c)
 + I*sqrt(2)*a^2*sin(6*d*x + 6*c) + 3*I*sqrt(2)*a^2*sin(4*d*x + 4*c) + 3*I*sqrt(2)*a^2*sin(2*d*x + 2*c) + sqrt
(2)*a^2)*arctan2(sqrt(2)*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - 1, sqrt(2)*sin(1/4*arctan2(sin
(2*d*x + 2*c), cos(2*d*x + 2*c))) + 1) - 90*(sqrt(2)*a^2*cos(6*d*x + 6*c) + 3*sqrt(2)*a^2*cos(4*d*x + 4*c) + 3
*sqrt(2)*a^2*cos(2*d*x + 2*c) + I*sqrt(2)*a^2*sin(6*d*x + 6*c) + 3*I*sqrt(2)*a^2*sin(4*d*x + 4*c) + 3*I*sqrt(2
)*a^2*sin(2*d*x + 2*c) + sqrt(2)*a^2)*arctan2(sqrt(2)*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - 1
, -sqrt(2)*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 1) + 90*(-I*sqrt(2)*a^2*cos(6*d*x + 6*c) - 3
*I*sqrt(2)*a^2*cos(4*d*x + 4*c) - 3*I*sqrt(2)*a^2*cos(2*d*x + 2*c) + sqrt(2)*a^2*sin(6*d*x + 6*c) + 3*sqrt(2)*
a^2*sin(4*d*x + 4*c) + 3*sqrt(2)*a^2*sin(2*d*x + 2*c) - I*sqrt(2)*a^2)*arctan2(sqrt(2)*sin(1/4*arctan2(sin(2*d
*x + 2*c), cos(2*d*x + 2*c))) + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))), sqrt(2)*cos(1/4*arctan2(
sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 1) + 90*(I*sqrt(
2)*a^2*cos(6*d*x + 6*c) + 3*I*sqrt(2)*a^2*cos(4*d*x + 4*c) + 3*I*sqrt(2)*a^2*cos(2*d*x + 2*c) - sqrt(2)*a^2*si
n(6*d*x + 6*c) - 3*sqrt(2)*a^2*sin(4*d*x + 4*c) - 3*sqrt(2)*a^2*sin(2*d*x + 2*c) + I*sqrt(2)*a^2)*arctan2(-sqr
t(2)*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)
)), -sqrt(2)*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*
x + 2*c))) + 1) - 45*(sqrt(2)*a^2*cos(6*d*x + 6*c) + 3*sqrt(2)*a^2*cos(4*d*x + 4*c) + 3*sqrt(2)*a^2*cos(2*d*x
+ 2*c) + I*sqrt(2)*a^2*sin(6*d*x + 6*c) + 3*I*sqrt(2)*a^2*sin(4*d*x + 4*c) + 3*I*sqrt(2)*a^2*sin(2*d*x + 2*c)
+ sqrt(2)*a^2)*log(2*sqrt(2)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(1/4*arctan2(sin(2*d*x +
2*c), cos(2*d*x + 2*c))) + 2*(sqrt(2)*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 1)*cos(1/2*arctan
2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*cos(1/4*ar
ctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*sin(
1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*sqrt(2)*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2
*c))) + 1) + 45*(sqrt(2)*a^2*cos(6*d*x + 6*c) + 3*sqrt(2)*a^2*cos(4*d*x + 4*c) + 3*sqrt(2)*a^2*cos(2*d*x + 2*c
) + I*sqrt(2)*a^2*sin(6*d*x + 6*c) + 3*I*sqrt(2)*a^2*sin(4*d*x + 4*c) + 3*I*sqrt(2)*a^2*sin(2*d*x + 2*c) + sqr
t(2)*a^2)*log(-2*sqrt(2)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(1/4*arctan2(sin(2*d*x + 2*c)
, cos(2*d*x + 2*c))) - 2*(sqrt(2)*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - 1)*cos(1/2*arctan2(si
n(2*d*x + 2*c), cos(2*d*x + 2*c))) + cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*cos(1/4*arctan
2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*sin(1/4*
arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 - 2*sqrt(2)*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))
) + 1) + 45*(-I*sqrt(2)*a^2*cos(6*d*x + 6*c) - 3*I*sqrt(2)*a^2*cos(4*d*x + 4*c) - 3*I*sqrt(2)*a^2*cos(2*d*x +
2*c) + sqrt(2)*a^2*sin(6*d*x + 6*c) + 3*sqrt(2)*a^2*sin(4*d*x + 4*c) + 3*sqrt(2)*a^2*sin(2*d*x + 2*c) - I*sqrt
(2)*a^2)*log(2*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*sin(1/4*arctan2(sin(2*d*x + 2*c), co
s(2*d*x + 2*c)))^2 + 2*sqrt(2)*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 2*sqrt(2)*sin(1/4*arctan
2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 2) + 45*(I*sqrt(2)*a^2*cos(6*d*x + 6*c) + 3*I*sqrt(2)*a^2*cos(4*d*x +
 4*c) + 3*I*sqrt(2)*a^2*cos(2*d*x + 2*c) - sqrt(2)*a^2*sin(6*d*x + 6*c) - 3*sqrt(2)*a^2*sin(4*d*x + 4*c) - 3*s
qrt(2)*a^2*sin(2*d*x + 2*c) + I*sqrt(2)*a^2)*lo...

________________________________________________________________________________________

Fricas [A]
time = 0.40, size = 608, normalized size = 0.99 \begin {gather*} \frac {6 \, \sqrt {\frac {225 i \, a^{5} e^{3}}{64 \, d^{2}}} {\left (d e^{\left (4 i \, d x + 4 i \, c\right )} + 2 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \log \left (\frac {2 \, {\left (\frac {15 \, {\left (a^{2} e^{\frac {3}{2}} + a^{2} e^{\left (2 i \, d x + 2 i \, c + \frac {3}{2}\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}}{\sqrt {e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} + 8 i \, \sqrt {\frac {225 i \, a^{5} e^{3}}{64 \, d^{2}}} d\right )} e^{\left (-\frac {3}{2}\right )}}{15 \, a^{2}}\right ) - 6 \, \sqrt {\frac {225 i \, a^{5} e^{3}}{64 \, d^{2}}} {\left (d e^{\left (4 i \, d x + 4 i \, c\right )} + 2 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \log \left (\frac {2 \, {\left (\frac {15 \, {\left (a^{2} e^{\frac {3}{2}} + a^{2} e^{\left (2 i \, d x + 2 i \, c + \frac {3}{2}\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}}{\sqrt {e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} - 8 i \, \sqrt {\frac {225 i \, a^{5} e^{3}}{64 \, d^{2}}} d\right )} e^{\left (-\frac {3}{2}\right )}}{15 \, a^{2}}\right ) + 6 \, \sqrt {-\frac {225 i \, a^{5} e^{3}}{64 \, d^{2}}} {\left (d e^{\left (4 i \, d x + 4 i \, c\right )} + 2 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \log \left (\frac {2 \, {\left (\frac {15 \, {\left (a^{2} e^{\frac {3}{2}} + a^{2} e^{\left (2 i \, d x + 2 i \, c + \frac {3}{2}\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}}{\sqrt {e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} + 8 i \, \sqrt {-\frac {225 i \, a^{5} e^{3}}{64 \, d^{2}}} d\right )} e^{\left (-\frac {3}{2}\right )}}{15 \, a^{2}}\right ) - 6 \, \sqrt {-\frac {225 i \, a^{5} e^{3}}{64 \, d^{2}}} {\left (d e^{\left (4 i \, d x + 4 i \, c\right )} + 2 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \log \left (\frac {2 \, {\left (\frac {15 \, {\left (a^{2} e^{\frac {3}{2}} + a^{2} e^{\left (2 i \, d x + 2 i \, c + \frac {3}{2}\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}}{\sqrt {e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} - 8 i \, \sqrt {-\frac {225 i \, a^{5} e^{3}}{64 \, d^{2}}} d\right )} e^{\left (-\frac {3}{2}\right )}}{15 \, a^{2}}\right ) + \frac {{\left (45 i \, a^{2} e^{\frac {3}{2}} + 113 i \, a^{2} e^{\left (4 i \, d x + 4 i \, c + \frac {3}{2}\right )} + 126 i \, a^{2} e^{\left (2 i \, d x + 2 i \, c + \frac {3}{2}\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}}{\sqrt {e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}}{12 \, {\left (d e^{\left (4 i \, d x + 4 i \, c\right )} + 2 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sec(d*x+c))^(3/2)*(a+I*a*tan(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

1/12*(6*sqrt(225/64*I*a^5*e^3/d^2)*(d*e^(4*I*d*x + 4*I*c) + 2*d*e^(2*I*d*x + 2*I*c) + d)*log(2/15*(15*(a^2*e^(
3/2) + a^2*e^(2*I*d*x + 2*I*c + 3/2))*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*e^(1/2*I*d*x + 1/2*I*c)/sqrt(e^(2*I*d*
x + 2*I*c) + 1) + 8*I*sqrt(225/64*I*a^5*e^3/d^2)*d)*e^(-3/2)/a^2) - 6*sqrt(225/64*I*a^5*e^3/d^2)*(d*e^(4*I*d*x
 + 4*I*c) + 2*d*e^(2*I*d*x + 2*I*c) + d)*log(2/15*(15*(a^2*e^(3/2) + a^2*e^(2*I*d*x + 2*I*c + 3/2))*sqrt(a/(e^
(2*I*d*x + 2*I*c) + 1))*e^(1/2*I*d*x + 1/2*I*c)/sqrt(e^(2*I*d*x + 2*I*c) + 1) - 8*I*sqrt(225/64*I*a^5*e^3/d^2)
*d)*e^(-3/2)/a^2) + 6*sqrt(-225/64*I*a^5*e^3/d^2)*(d*e^(4*I*d*x + 4*I*c) + 2*d*e^(2*I*d*x + 2*I*c) + d)*log(2/
15*(15*(a^2*e^(3/2) + a^2*e^(2*I*d*x + 2*I*c + 3/2))*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*e^(1/2*I*d*x + 1/2*I*c)
/sqrt(e^(2*I*d*x + 2*I*c) + 1) + 8*I*sqrt(-225/64*I*a^5*e^3/d^2)*d)*e^(-3/2)/a^2) - 6*sqrt(-225/64*I*a^5*e^3/d
^2)*(d*e^(4*I*d*x + 4*I*c) + 2*d*e^(2*I*d*x + 2*I*c) + d)*log(2/15*(15*(a^2*e^(3/2) + a^2*e^(2*I*d*x + 2*I*c +
 3/2))*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*e^(1/2*I*d*x + 1/2*I*c)/sqrt(e^(2*I*d*x + 2*I*c) + 1) - 8*I*sqrt(-225
/64*I*a^5*e^3/d^2)*d)*e^(-3/2)/a^2) + (45*I*a^2*e^(3/2) + 113*I*a^2*e^(4*I*d*x + 4*I*c + 3/2) + 126*I*a^2*e^(2
*I*d*x + 2*I*c + 3/2))*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*e^(1/2*I*d*x + 1/2*I*c)/sqrt(e^(2*I*d*x + 2*I*c) + 1)
)/(d*e^(4*I*d*x + 4*I*c) + 2*d*e^(2*I*d*x + 2*I*c) + d)

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sec(d*x+c))**(3/2)*(a+I*a*tan(d*x+c))**(5/2),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 8569 deep

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sec(d*x+c))^(3/2)*(a+I*a*tan(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate((I*a*tan(d*x + c) + a)^(5/2)*e^(3/2)*sec(d*x + c)^(3/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int {\left (\frac {e}{\cos \left (c+d\,x\right )}\right )}^{3/2}\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{5/2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e/cos(c + d*x))^(3/2)*(a + a*tan(c + d*x)*1i)^(5/2),x)

[Out]

int((e/cos(c + d*x))^(3/2)*(a + a*tan(c + d*x)*1i)^(5/2), x)

________________________________________________________________________________________